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Abstract

Spatial heterogeneity in fields may affect the outcome of experiments. The conventional randomized allocation of treatments to plots may
cause bias and variable precision in the presence of trends (including periodicity) and spatial autocorrelation. Agricultural scientists appear to
mostly use conventional experimental designs that are susceptible to adverse affects from field variability. The objectives of this research were to
(i) quantify the use of different experimental designs in agronomic field experiments, and (ii) develop spatially-balanced designs that are
insensitive to the effects of both trends and spatial autocorrelation. A review was performed of all research efforts reported in Volumes 93–95 of
the Agronomy Journal and the frequency of various experimental designs was determined. It showed that the vast majority (96.7%) of agronomic
field experiments are implemented through Randomized Complete Block (RCB) designs. The method of simulated annealing was used to develop
Spatially-Balanced Complete Block (SBCB) designs based on two objective functions: promoting spatial balance among treatment contrasts, and
disallowing treatments to occur in the same position in different blocks, when possible. SBCB designs were successfully developed for designs up
to 15 treatments and 15 replications. Square SBCB designs were realized as Latin Squares, and perfect spatial balance was obtained when feasible.
SBCB designs are simple to implement, are analyzed through conventional ANOVAs, and provide protection against the adverse effects of spatial
heterogeneity, while randomized allocation of treatments still ensures against user bias.
© 2007 Elsevier B.V. All rights reserved.
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Field experiments in agronomy and related disciplines
have traditionally been affected by soil heterogeneity. This is
especially of concern when treatment effects are small and soil
variability is high, as this inflates the error term. Intrinsic soil
variability is the result of the geological, hydrological, and
biological factors that affect pedogenesis. The fact that soils are
routinely mapped suggests that areas can be identified that are
relatively uniform, but more recent research suggests that soils
generally constitute a continuum with variability at different
scales (van Es, 2002).

The structure of soil variability has important implications
for the design of experiments. Most agronomic field experi-
ments are based on the concepts of replication, local control
(blocking) and randomization (Atkinson and Bailey, 2001).
Replication allows for estimation of the experimental error by
applying treatments to different plots under the same experi-
mental conditions. Sufficient replication is needed to distin-
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guish treatment effects from background variability. Blocking is
used in field experiments to control the adverse effects of soil
heterogeneity. Yates (1936) extended this concept by proposing
incomplete blocks where the smaller units are assumed to
adhere better to the assumption of uniformity.

The use of randomization has been justified in many ways. Its
basic purpose is to remove bias from the estimation of treatment
effects (Atkinson and Bailey, 2001), and to equalize the error
over all treatment differences (Yates, 1939; Fagroud and van
Meirvenne, 2002). Randomization is often considered the best
protection and assurance against malicious manipulation of
plot layout. Randomization is also believed to better justify the
assumption of normal errors. A concern with randomization is
the possibility of undesirable outcomes such as treatments being
repeatedly located in the same location in different blocks, and
treatment pairs being repeatedly located in adjacent positions.
This poses no concern when variability is truly random and
stationary, but agricultural scientists often admit to minor ad-
justments to randomized designs when treatment allocations
appear undesirable.

mailto:hmv1@cornell.edu
http://dx.doi.org/10.1016/j.geoderma.2007.04.017


347H.M. van Es et al. / Geoderma 140 (2007) 346–352
1. Accounting for nonstationarity

The common assumption in experimental design is that
observations yi are realizations of a random variable Yi which is
independently distributed with the expectation of Yi being con-
stant (stationary) in the experimental domain:

E Yið Þ ¼ l for all i; ð1Þ

and the variance, σ2, being constant and estimable:

E Yi−lð Þ½ �2 ¼ r2 for all i ð2Þ

μ (mean) and σ are often assumed to be parameters of a normal
(Gaussian) probability distribution function, thereby allowing
for a series of powerful statistical testing procedures. Past
research demonstrated that these assumptions are generally
erroneous for agricultural fields, and common deviations from
the above model are:

• Nonuniformity of the mean (first-order nonstationarity):
Within the experimental domain, the land property cannot be
assumed to have the same expected value (i.e., Eq. (1) is
invalid), but shows structural variation through a trend or
discontinuity: The presence and significance of a simple field
trend can be identified (David, 1977; Davidoff et al., 1986).
A special case of first-order stationarity is the presence of
periodicity or cyclical trends, which tend to be associated
with cultural practices such as ridge and furrow patterns,
wheel traffic, etc., and may be detected by spectral analysis
(McBratney and Webster, 1981).

• Spatial autocorrelation: This implies that the assumption
of independence among observations is incorrect (Nielsen
et al., 1973; Vieira et al., 1981; Russo and Bresler, 1981). In
such cases, Yi is considered to be a regionalized variable and
the variance is expressed in terms of the relative spatial
location (h):

E Yi−Yiþhð Þ2¼ 2gi hð Þ for all i ð3Þ
or

E Yi−lið Þ Yiþh−lið Þ½ � ¼ Ci hð Þ for all i ð4Þ
where γι(h) and Ci(h) are the semivariogram and autocovar-
iance function, respectively, which can be estimated to verify
the presence of autocorrelation. The use of blocking is an
implicit recognition of the common presence of spatial auto-
correlation and the fact that variance generally increases with
scale, i.e., smaller experimental areas have lower variability
than larger ones.

Student (1938), as also cited by Atkinson and Bailey, 2001)
recognized that field trends can affect the outcome of ex-
periments and argued that plot allocations are “balanced” rather
than randomized to reduce bias and the variance of the esti-
mators of treatment differences. Jeffreys (1939) concluded that
‘one should balance or eliminate the larger systematic effects
first, and then randomize the rest’, as is done in random-
ized block designs. Standard analyses (ANOVA) generally are
considered to yield valid estimates of treatment effects in the
presence of trends and spatial autocorrelation (Brownie and
Gumperts, 1997), but detrending methods (Kirk et al., 1980;
Tamura et al., 1988) and nearest neighbor analysis and related
techniques (e.g., Papadakis, 1937; Wilkinson et al., 1983; Gill
and Sukla, 1985) have been successfully employed to improve
the precision of estimators of treatment effects.

2. Spatial autocorrelation and design

van Es and van Es (1993) evaluated the spatial nature of
randomized arrangement of plots in RCB designs, and deter-
mined its effect on the outcome of experiments. Under the
common condition of spatial autocorrelation, the distance be-
tween plots affects the error variance, efficiency and the out-
come of tests (Martin, 1986). If the distance between plots (hp)
equals unity when they are adjacent, the mean distance (μhp)
associated with any two treatment contrasts increases with the
number of treatments (t) in an experiment (van Es and van Es,
1993):

lhp ¼ t þ 1ð Þ=3 ð5Þ

This implies that experiments with larger numbers of treatments
in (complete) blocks have higher experimental errors, assuming
spatial autocorrelation, than those involving lower number of
treatments. Also, the spatial nature of randomization is such that the
mean distance for any two treatment contrasts has higher variance
(σhp

2 ) with increasing number of treatments, but decreases with
the number of replications, r (van Es and van Es, 1993):

r2hp ¼ t−2ð Þ t þ 1ð Þ=18r ð6Þ

This implies that, when randomized plot allocation is used
within blocks, high discrepancy will exist in the spatial distance
associated with treatment contrasts when the blocks are large
and the number of replications low. It was concluded from
probability distributions and a simulation study involving wheat
yield uniformity trial data that commonly-used randomization
and replication in RCB designs may result in unequal precision
in treatment comparisons and erroneous assumptions about test
confidence levels in the presence of spatial autocorrelation.
Similarly, it can be argued that the presence of field trends or
periodicity may generate false treatment effects under certain
randomization realizations if some treatments are dispropor-
tionally represented in areas of high or low fertility. Incomplete
block designs provide some protection against spatial imbal-
ance and improve efficiency (van Es et al., 1989; Lopez and
Arrue, 1995; Watson, 2000). Others (e.g., Cheng and Steinberg,
1991; Watson, 2000; Fagroud and van Meirvenne, 2002; Martin
et al., 2004) have addressed this concern by considering spatial
autocorrelation or trend structures, in some cases from prior soil
or crop information, to optimize field designs. Concerns with
such approaches are that the design process becomes more
costly and cumbersome, and that the autocorrelation structure is



Table 1
Types and frequency of experiments discussed in Agronomy Journal volumes 93
through 95

Type of research Frequency

Field-based experiment 414
Greenhouse experiment 37
Laboratory experiment 22
Modeling/simulations 20
Review/symposium 27
Other 17
Total 537

Table 2
Characterization of designs used in field-based experiments reported in Agronomy
Journal volumes 93 through 95

Design type Frequency Mean

# of treatments # of replicates

Randomized Complete Block 300 8.0 3.8
Completely Randomized 4 17.3 14.7
Randomized Incomplete Block 3 43.6 3.7
Split Block 2 4.0 4.5
Latin Square 1 4 4
Field strips — unknown design 9 4.6 3.2
Split plot — with unknown
main-plot arrangement

42 NA NA

Other 53 NA NA
Total 414
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difficult to define as variability patterns often change among
response variables and may not be temporally stable (Katsvairo
et al., 2003; Magri et al., 2005).

Problems associated with trends and spatial autocorrelation
can be addressed through improved design and analysis. It
was hypothesized that few of these methods are applied by
agricultural scientists, because they require considerable
additional effort and cost. We set out to quantify the fact that
most field scientists prefer simple designs that can be easily
implemented and analyzed. Yet, many are also concerned about
undesirable realizations of conventional randomized designs
that may result in artificial treatment effects due to trends. This
research therefore also addressed a need for experimental
designs that are robust to both spatial autocorrelation and trends,
as suggested by van Es and van Es (1993), and that can be
readily implemented by a wide range of agricultural scientists
and professionals.

The objectives of this research were to:

1. Through a journal review, quantify the adoption rate of ad-
vanced design and analysis methods for dealing with spatial
heterogeneity in agronomic field experiments, and

2. Develop a set of spatially-balanced designs that are in-
sensitive to the negative effects of both trends and spatial
autocorrelation using the method of simulated annealing,
and can be readily adopted by agricultural scientists and
professionals.

3. Journal review

3.1. Methods

Volumes 93, 94 and 95 (2001 through 2003) of the Agronomy
Journal were reviewed to assess the distribution of experimental
design types used by current agricultural scientists. This journal
is considered to be a leading scientific publication in the dis-
cipline of agronomy with six issues per year. The ISI Journal
Citation Report® listed 5753 total citations to the journal in
2003, an impact factor of 1.243, and an immediacy index of
0.148. The number of articles published in Volumes 93, 94, and
95 were 183, 163, and 183, respectively.

For each paper, the research environment (field, laboratory,
greenhouse, or other), experimental design, and number of
treatments and replications were determined. In cases where
multiple experiments were reported in the same article, each was
considered separately. In cases where the number of treatments
and replicates in the experiment changed over multiple years,
average values were used. When experiments involved splits,
the main-plot arrangement was used to classify the design type,
if known.

3.2. Results and discussion

Volumes 93 through 95 of the Agronomy Journal reported
537 research efforts, some papers including more than one
experiment (Table 1). Of those, 414 (77%) were reported to be
field experiments, 37 (7%) were greenhouse trials, and 22 (4%)
laboratory efforts. The remainder of the papers involved
reviews or symposium reports, or others (methodology, notes,
survey, etc.). The applied nature of the journal is therefore
reflected in the large fraction of field experiments that are
discussed in these volumes. Since the concerns with trends and
autocorrelation are mainly associated with field experiments,
we analyzed the types of designs used for those (Table 2). Of the
414 field experiments, the majority (300, 72%) were imple-
mented as RCB designs. Completely Randomized, Randomized
Incomplete Block, Split Block and Latin Square designs were
rarely used (4, 3, 2, and 1 occurrences, respectively; Table 2). In
addition, 9 experiments involved non-randomized field strips,
typically involving on-farm research efforts, and 53 involved
other field sampling efforts (surveys, etc.). The journal volumes
discussed 42 field experiments that were conducted as split plot
without any indication of the main-plot design, which is a
notable omission by both authors and editors. Some other
experiments were also conducted as split plot, but were
classified under the main-plot arrangement.

The review of these three volumes of the Agronomy Journal
shows that 96.7% (300/310) of the field experiments with known
main-plot design were implemented using randomized complete
blocks. Clearly, agronomists favor this design and rarely see
compelling reasons to use more advanced designs that more
explicitly address spatial variability concerns (i.e., incomplete
blocks, Latin Squares, etc.). Also, no experiment was analyzed
using trend or nearest neighbor analysis. It is presumed that most
agronomists prefer RCB designs for their simplicity and intuitive
layout.
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It is notable that Completely Randomized designs had higher
mean number of treatments and replications (Table 2), and were
often associated with studies involving many species or varieties
(e.g., trees). The three incomplete block experiments included a
variety trial with 120 entries, and two studies with only 5 or 6
treatments, of which one explicitly mentioned the potential gains
from incomplete blocks, even in smaller experiments.

An analysis of the greenhouse experiments revealed that out
of a total of 37, 16 (43%) were implemented as Completely
Randomized designs, 17 (46%) as RCB designs, and 4 did not
involve an experimental design. This suggests that agronomists
are less concerned about spatial variability in greenhouse ex-
Table 3
Spatially-Balanced Complete Block designs for experiments with up to ten treatmen

# of
treatments

2 3 4 5

2 ba ab ab ba ba ba ab ab ba ab ba ab ba ab

3 bca cab cba bac
acb

bac acb
abc cab

bac acb cba
bca cba

4 dcab cbda cdab dbca
dabc

abcd cdab
dabc bcda

cbda dcab
acbd badc
bdca

5 debac
bdcea

cebad
eadcb
dceba

edacb dbcea
acdbe baedc

cdebf dabce
aecdb ebdac
bcaed

6 cabfed
becdaf

facedb
cbadef
efbacd

bcedfa
cafedb
efbacd
fdcbae

beacdf afbdec
fceabd cbdfae
dacefb

7 gbcdeaf
dagfbec

bcgadef
gedcbfa
caefgbd

fdcbage
bgfcead
afbecdg
cagfdeb

cdgfeab
fbdagce
gabcdef
deagfbc
acfebdg

8 cfehgdba
hdfacbge

cefdbhag
hfgcdaeb
facbgehd

dbfhegac
bcheadfg
hdgcbaef
egbdcfha

fhegcabd
cfdegbha
ebchafdg
aefdbhgc
hdecagfb

9 fbicagdeh
cdbghfeai

caefdhibg
ehicgfdab
dicbeaghf

dgeafhibc
aighcefdb
ehabdigcf
iecdafbgh

bacghfdei
ahdceibgf
ebhfagidc
geadfbcih
fceaihgbd

10 ciadbgfhje
gdhiecjafb

dgbhfjceia
bcfadhiegj
fidjbagech

gcbejdfaih
edacighbfj
bieagfjchd
agjdbheicf

gcfijdhbae
dfaghibjec
bgjdefcaih
idbcagefhj
fbchdegija
periments and more frequently use unblocked designs, despite
the fact that greenhouses are known to have spatial trends in
environmental indicators such as air temperature, humidity, and
solar radiation.

4. Development of spatially-balanced designs

4.1. Methods

The previous section documented the strong preference by
field agronomists for complete block designs and their presumed
reluctance to deal with more complex plot layouts and analysis
ts (a–j) and eight blocks

# of blocks

6 7 8

ba ab ab ba ba ab ab ba ab ab ba ab ba ba ab ab ba ba ab ba ab

acb cba bac
acb cba bac

bac abc bca cab
acb cba cab

cab abc acb cab
cba bac bca abc

dcba bcda bdac
abcd cadb dabc

cdba dabc bacd adcb
dbac bcad acdb

cadb dbca bacd adbc
dcab adbc bcad cbda

caedb dbaec bcdae
becad aebcd edcba

cdeba dabce aecdb
beacd bcade adbec
ebdac

baecd ecadb dbcea
cbdae adebc becda
cabed edbac

feadbc baecdf edcbfa
cfbead acdfeb dbface

fbecda cfdabe bdaefc
decbaf eafdcb acbfed
ecbafd

deabcf cbefda
bdfcea cabdfe
afcebd fdcaeb
ecdfab febadc

eafdbcg fcgaebd
gbaecdf cebfdga
dgecfab adcbgfe

fbdgcae afcegdb
cdefbga dagbecf
gcbafed egfdabc
beacdfg

fgdceba cabfdge
bgcdfae fbegacd
afgcedb gceabfd
ecfdabg dagebfc

gbfceahd efdbhgac
hgefacdb aebgdhcf
gdafcebh fabhgdec

hcdabefg debafhcg
bfcheagd fehdcgba
caefgdhb ahfgdbec
ehgbacdf

beachgdf gahdcefb
dbcgafhe afdeghbc
hdebfcga chfabdeg
fgbheacd ecgfdbah

fedigbcah
dabgecfhi
hdcebgifa
ibehafdcg
bcfdiahge
gfhbdiaec

ifachdgeb fbcgdaeih
gahfebicd hcbeaidgf
edfhcgabi dhgbifcae
cgeifhbda

icedabhgf aifhdgcbe
dfhebigac fbgcidaeh
geafchdib hgibeafcd
badghcefi chbafeidg

chbigdfeja
diabhegjfc
ijhedfcagb
egicahdfbj
gdjhcaebif
hafgijbcde

fecgaibjdh
ahfbegidcj
gihfjedbac
bgdcfhjeia
edgahjcfbi
hciedbfajg
jbehgcaifd

adjheifgcb
eghfjbacdi
jcgiahedbf
baechjifgd
hibdgecafj
chfadgbjie
ifaecdgbjh
decjbfhiag



Table 4
Spatially-Balanced Complete Block designs for experiments with 11 to 15 treatments (a–o) and up to eight blocks

# of
treatments

# of blocks

2 3 4 5 6 7 8

11 bcijakgehdf
kjhcgfbdiea

acjgiehkbfd
bghafjdicek
ifgkcbadehj

eikfacdgjbh
fdihjabkgec
jkfcdbehiag
dakhejgfcib

jfkdagcheib
abckfhejigd
gahjbefdcki
ekgbjcdaihf
cjeaifgbkdh

fibacekdhjg
ahikdjbcgfe
dbeighajfkc
ijcehdfbagk
eajdfkigbch
dcagifhekbj

bfgcjhadkie
gaejdfbkihc
fkjaicgehbd
ecjbkadhfgi
djigcbkaefh
kgcdfehjiab
jhkgbeifdca

fhebkjagdic
ejcdbgfkiha
iekgjachfbd
gbaehidcjfk
acbkefidhjg
kdhjaebicgf
bijhckgfade
jafidbkegch

12 fjcahlgibked
liakjdfecbhg

cjeglhikabfd
gkfhecdbijla
hblcfgajdkei

cjeglhikabfd
gkfhecdbijla
hblcfgajdkei

dfgichebakjl
ailfhedjkgcb
fkhgabldecij
hcadjfblgike
bdihklcfjaeg

iadkhgfcbjel
bkijgcaehldf
gfkejadilbhc
hjafbkldgcie
aglbifehkdcj
dbghejifcalk

eijfgcblhkda
bafiklecdhgj
flhjaedikcbg
hbedfgkajilc
dfcbjihklgae
kjbledfgcahi
ldigbajhfeck

kdilfagcebjh
djlcgbeikhaf
acjikhlbdfge
gabkdjhflcei
ehdaclbkgifj
cfkbedajighl
blafjeidhkcg
lkejagfhcdib

13 fkihgabcdmjel
adhjklbfeimgc

fgdbjcmklhaie
kdacbeglhfijm
chgmadifekjbl

kjfbaglmidche
hamjifckdbleg
bcijlhkeagmdf
ikmgbhfejcdal

mfdcgkejibhal
hgeimcajfldbk
jidglmakehfbc
kichdaflgebjm
agfibkmhjdcle

kmedhblafigjc
ajdeifckbhgml
kigdlabcemjhf
leihjkcbamgdf
cdhimalfkjgeb
bimjdlfkcegha

jdfgkbeilahcm
hjkblagmdcfie
flhedkmgaibjc
gilkcdhjemafb
lejmgcbkfhida
mkifjladcbehg
kaecfgjhilmbd

jgdkcmelabfih
bjmekihdfgacl
debchgijlfmak
hmldgbakeijfc
eaghmfjcbdlki
mcigbakfdhelj
gbflekcmhjida
khcbajlgiedmf

14 afegjhlmdikncb
ldjkecabfngihm

dnbjhcagfkelim
cengljmbkdfiah
kjalcdinehmfbg

mdfeagcknjilhb
jgdhicmelnfbka
eingbmahkdjflc
nchadbejfilmgk

lmnbjhgkafedci
jcfmhabdgelink
alecbmkihgfnjd
gbcnafiljkdmeh
fkbhldcnejiamg

enkldamjficbhg
kjfhndgimlbeca
dmhcfelkgbjani
jclngmhakeifbd
gkmiejcdbnhlaf
mbnfkcagdjehil

jdbhaeilkcfmng
bncdlfhaikgjem
ifebgdcmahknjl
dkinhmeblfjgac
eanfdlkgbjmhci
lmdaigbnjeckhf
kbamfjnicdelgh

dnhgmljacebkfi
lkedjbainhcgmf
mabkdngceflihj
khclagdfbinjem
fdjacehnkmilgb
gjkniaflmcdebh
egaihdkmfljbcn
alnfehbgjkmdic

15 nbamcdefgkjlohi
ekclahnifbomjdg

becdfhjialnkgom
ihgelncodmbjakf
ndaimefgbkhocjl

ikobhlafndjcmge
minfljekbocghad
fhjgkmodiealncb
ldkcfgibmhneajo

jgoebhnmcflkdia
imekhcjlagbdfno
clbmgiokndjaehf
hdmoljifbekgacn
legdinhcoamfjbk

ielngfmbchkajdo
bgkldjimfahnoce
dfncjghikebolam
gachlidobfeknmj
flhjaebdngomcik
hmdgeofklcjianb

aiodcjblhkgenmf
lbfogamiknjhdec
gnaclkjofdeimhb
jfighclmdabneok
dgbjkmafceiohnl
ikcbfndhogmalje
hakfdlegibnjocm

mfokailjcbnhegd
cidmnbjfahogkel
jgmlcnhafeikbdo
khcfjdelmobnaig
ijhoemnkdgfaclb
nkjadlocgiemhbf
lnfihodgkcmbjae
ocnefjgbikldmha
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methods. Designs were therefore developed that are inherently
insensitive to non-random field variability within the frame-
work of the generally-favored complete block layout. Spatially-
BalancedComplete Block (SBCB) designs are based on standard,
spatially optimized experimental layouts to which treatments can
be randomly assigned. Such random assignment of treatments
ensures against user bias and allows for a large number of possible
design outcomes. SBCBdesigns are a subset of all possible design
realizations for RCB designs, with those designs excluded that
may cause bias and imprecision when implemented on trended or
autocorrelated experimental domains.

SBCB designs were developed using the computational
method of simulated annealing, based on the successful ap-
proach for the Traveling Tournament Problem (Anagnostopou-
los et al., 2003). Two simultaneous objectives were applied
(Gomes et al., 2004): (i) promoting spatial balance among
treatment contrasts, and (ii) disallowing treatments to occur
in the same position in different blocks (unless the number of
replications are greater than the number of treatments). Spatial
balance among treatment contrasts was evaluated based on the
average distance between plots for each of the (2

t ) possible
treatment comparisons, for which σhp

2 (Eq. (6)) was minimized.
Designs were therefore balanced based on distances of all
treatment contrasts, not based on first-order autoregressive
assumption as done by Cheng and Steinberg (1991) and Martin
et al. (2004). Our designs therefore are optimized based on a



351H.M. van Es et al. / Geoderma 140 (2007) 346–352
linear variogram model with a range greater than the width of a
complete block. Simulations were performed for up to 15
treatments and 15 replications, which covers the majority of
experiments conducted by agronomists.

Simulated annealing is a heuristic computational optimiza-
tion method where in this case designs were generated and
progressively improved through a local search approach with a
pre-selected search neighborhood. Simple neighborhoods
appeared to result in better performance than more complicated
neighborhoods. In this study, one simple move was used for
each subsequent design improvement, i.e., swapping a random
pair of treatment indicators in a random block (Gomes et al.,
2004). Five variations were used on the strength of the two
objective functions. One design was selected from the five
obtained for each treatment–replication combination based on
the degree to which objectives were met, and whether treatment
allocations in blocks were unique within a given design, as
much as possible. The simulated annealing approach was
implemented in C++ compiled with the GNU G++ compiler
version 3.2.2, and executed on the Cornell University Depart-
ment of Computing and Information Science computer cluster.

4.2. Results and discussion

The computational requirements for the simulated annealing
effort went up exponentially with the increasing size of the
design, as discussed by Gomes et al. (2004). For example, the
optimum solution for square designs was found with 0.01, 0.36,
153, and 883 CPU seconds (mean values for ten runs) for
designs of order 3, 6, 9, and 12. Obtaining 225 optimum SBCB
designs (up to 15 treatments and 15 replicates) therefore
required several weeks of simulations on a 25-unit computer
cluster. Larger SBCB designs were not derived using simulated
annealing because the computational method was not capable of
converging on perfectly balanced designs due to the complexity
of the multiple treatment arrangements.

Slight variations in the relative strength of the two objective
functions (balance of spatial distance vs. different locations of
treatments in blocks) resulted in different SBCB designs, of
which one was chosen that best provided unique treatment
allocation in blocks. Designs are listed in Table 3 for up to 10
treatments and 8 blocks, and in Table 4 for 12 to 15 treatments
and up to 8 blocks.

Perfect spatial balance (σhp
2 =0) was generally achieved when

theoretically possible for up to 15×15 designs. This resulted in
spatially-balanced Latin Square designs when the number of
treatments and replications were equal. Such perfectly balanced
square designs (i.e., all (2

t ) treatment contrasts have equal
average distance of comparison) can be obtained when (Gomes
et al., 2004):

t mod 3p1 i:e:;2� 2; 3� 3; 5� 5; 6� 6; 8� 8; 9� 9; etc:ð Þ
ð7Þ

This fact allowed for an independent evaluation of the sim-
ulated annealing effort, and provided indication of its limits for
large designs (greater than 15). It is noted that a perfectly
balanced square design implies a Latin Square arrangement, but
that the reverse does not hold and most Latin Square designs
are in fact spatially unbalanced. Perfect spatial balance for non-
square designs was generally achieved when theoretically fea-
sible. Spatial balance in all other designs was optimized.

These standard layouts can be used in experimental design by
randomly allocating treatments to the letter indicators (Tables 3
and 4). Blocks in the layout may also be interchanged as this
does not affect spatial balance. The random assignment of
treatments eliminates user bias and provides a large number
of possible design outcomes, although not as numerous as in
traditional RCB designs. Split-plot designs can also be based on
SBCB designs through a multi-stage procedure where spatially-
balanced main plots are first identified and spatially-balanced
split plots are subsequently defined within the main plots using
Tables 3 or 4. Although spatial balance in the designs was
developed for treatments that are laid out adjacently, the results
also generally provide good designs when the treatments are
implemented in other arrangements (e.g., blocks of 8 treatments
laid out as 2×4).

Most SBCB designs can be analyzed using ANOVA meth-
ods that account for block effects, similar to conventional
RCB designs. Square SBCB designs are a special case of Latin
Square designs and may be analyzed as such. The random
initialization and search methods in the simulated annealing
method, combined with the random allocation of treatments to
indicators provide assurance that basic assumptions underlying
ANOVA are adhered to.

5. Conclusions

A review of experimental procedures reported in recent
volumes of the Agronomy Journal indicates that the vast
majority (96.7%) of field experiments conducted by agronomists
are implemented through RCB designs. The use of blocking
addresses the concerns about spatial autocorrelation in fields, but
such designs do not explicitly deal with other issues related to
spatial balance or trends. Most agronomists do not make efforts
to address such concerns and apparently consider the conven-
tional RCB designs useful, convenient, tried and proven.

This research focused on developing designs that are
inherently robust to concerns with both field trends and spatial
autocorrelation, but in the context of the popular complete block
designs. The designs provide spatial balance among treatment
contrasts and distribute the treatments among locations in blocks
in different replications. They are based on common assump-
tions of spatial variability structure and do not require detailed
quantification of the variability structure. The SBCB designs
therefore provide a simple way to ensure that the experiment is
not adversely affected by spatial variability, without requiring
additional field data, complex experimental design procedures,
or alternative data analysis. The random nature of the simulated
annealing method that was used to develop the designs, as well
as the randomized allocation of treatments ensures the validity of
analysis assumptions and protects against user bias. Moreover,
SBCB designs can readily be implemented by field professionals
for use in experimentation.
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Although we have focused on field experiments, these de-
signs also have application to other types of experiments where
trends and autocorrelation are of concern, including greenhouse
trials. The principles of spatially-balanced designs also apply
to a number of laboratory methods, including multi-well titer
plates used for chemical and biological analyses, and microarray
slides used in genomics research, all of which are known to have
problems with non-random spatial patterns.
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